Developing a bicyclist route choice model

Urban Studies and Planning
Joe Broach, PhD Student
John Gliebe, Professor
Jennifer Dill, Professor
Random Utility Model

Alternative Routes

Attributes

Weights

Choice
Stated Preference

Imagine you commute to work by bicycle. If route 1 and route 2 are the only available options for your commute and your travel time on each route is as given below each video, which route would you use?

Route 1: 40 Minutes
Route 2: 20 Minutes

Your Choice:

1
2

Tilahun et al. (2007)
Revealed Preference

- GPS Track
- Bike Network
 - no facility
- Attributes
 - signed bike route
 - on-street bike lane
 - bike boulevard
 - off-street path
GPS Data used for model (2007)

- Cyclists 154
 - Women 44%
 - Year-round 96%
- Trips 1464
 - Commute 30%
- Miles 5169
 - Portland 83%
Observed bike travel
Alternative generation

- GPS Track
- Bike Network:
 - no facility
- Attributes:
 - signed bike route
 - on-street bike lane
 - bike boulevard
 - off-street path
Calibrated Labeling Method

Optimize key attributes

Subject to…
Sample Alternative (1)

- Maximize bike lane use, subject to distance constraint
Sample Alternative (2)

- Relaxing distance constraint results in 2nd unique alternative.
Sample Alternative (3)

- Relaxing distance constraint further results in 3rd unique alternative.
Attributes

<table>
<thead>
<tr>
<th>Facility</th>
<th>Intersection</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike Facility</td>
<td>Turns</td>
<td>Distance</td>
</tr>
<tr>
<td>Functional Class</td>
<td>Signal/Stop</td>
<td>Slope</td>
</tr>
<tr>
<td>Traffic Volume</td>
<td>Cross Volume</td>
<td></td>
</tr>
<tr>
<td>One-way</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equivalent Distances by Facility (Non-Commute)

- Highway: 0.14
- Major arterial: 0.42
- Minor arterial: 0.82
- Bike lane: 1.00
- Bike boulevard: 1.22
- Bike path: 1.35
- Bridge bike lane: 1.41
- Bridge path: 1.81
Equivalent Distances by Features (Non-Commute)
Equivalent Distances by Facility (Non-Commute)
Equivalent Distances by Features (Non-Commute)
Equivalent Distances by Facility (90 percent random param. intervals)
Equivalent Distances by Feature (90 percent random param. intervals)
<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upslope 6%+</td>
<td>0.08</td>
</tr>
<tr>
<td>Upslope 4-6%</td>
<td>0.26</td>
</tr>
<tr>
<td>Upslope 2-4%</td>
<td>0.58</td>
</tr>
<tr>
<td>Per mile...</td>
<td></td>
</tr>
<tr>
<td>Cross traffic 20k+, no sig</td>
<td>0.62</td>
</tr>
<tr>
<td>Left across 20k+, no sig</td>
<td>1.07</td>
</tr>
<tr>
<td>Left across 10-20k, no sig</td>
<td>0.86</td>
</tr>
<tr>
<td>Cross traffic 10-20k, no sig</td>
<td>0.91</td>
</tr>
<tr>
<td>Cross traffic 5-10k, no sig</td>
<td>0.93</td>
</tr>
<tr>
<td>Turn</td>
<td>0.93</td>
</tr>
<tr>
<td>Signal</td>
<td>0.96</td>
</tr>
<tr>
<td>Stop</td>
<td>0.99</td>
</tr>
<tr>
<td>Highway</td>
<td>0.14</td>
</tr>
<tr>
<td>Major arterial</td>
<td>0.42</td>
</tr>
<tr>
<td>Minor arterial</td>
<td>0.82</td>
</tr>
<tr>
<td>Bike lane</td>
<td>1.00</td>
</tr>
<tr>
<td>Bike boulevard</td>
<td>1.22</td>
</tr>
<tr>
<td>Bike path</td>
<td>1.35</td>
</tr>
<tr>
<td>Bridge bike lane</td>
<td>1.41</td>
</tr>
<tr>
<td>Bridge path</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Questions?
jbroach@pdx.edu