Evaluation of the First Fixed Speed Photo Enforcement on an Urban Freeway in the US: The Scottsdale AZ Experience

Presentation by:
Dr. Ida van Schalkwyk
Oregon State University
idavan@engr.oregonstate.edu
541-760-2024
ACKNOWLEDGEMENTS

• Research as part of efforts at Arizona State University

• My research team members:
 – Prof Simon Washington
 – Kangwon Shin.

• Funding agency
 – Arizona State Department of Transportation
PRESENTATION OUTLINE

• Program summary

• Summary of findings
 – Impact of the speed enforcement camera demonstration program (SEP) on **speeding** behavior
 – Impact of the SEP on **mean speeds**
 – Impact of the SEP on **traffic safety**

• Conclusions
PROGRAM SUMMARY
BACKGROUND

• Speeding is recognized as a major contributing factor in traffic crashes
• Photo radar technologies are used in 75 counties throughout the world to enforce speeding
• Until 2006, the US had not seen a permanent installation of photo enforcement on limited access freeways
BACKGROUND

• In order to reduce speed-related crashes, city of Scottsdale implemented **the first fixed photo speed enforcement camera demonstration program (SEP)** in the US
 – January 22, 2006 – October 23, 2006 (9 months)
 – 6.5 mi stretch of Arizona SR 101 in Scottsdale
Enforcement zone: MP 34.51– MP 41.06 (Approximately 6.5 miles)
Location of 6 Enforcement Stations

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scottsdale Rd. and Hayden Rd.</td>
<td>East Bound</td>
</tr>
<tr>
<td>2</td>
<td>Hayden Rd. and Bell Rd.</td>
<td>West Bound</td>
</tr>
<tr>
<td>3</td>
<td>Frank Lloyd Wright Blvd. and Raintree Dr.</td>
<td>South Bound</td>
</tr>
<tr>
<td>4</td>
<td>Raintree Dr. and Cactus Rd.</td>
<td>North Bound</td>
</tr>
<tr>
<td>5</td>
<td>Shea Blvd. and Mountain View Rd.</td>
<td>South Bound</td>
</tr>
<tr>
<td>6</td>
<td>Shea Blvd. and Mountain View Rd.</td>
<td>North Bound</td>
</tr>
</tbody>
</table>

- Three cameras per direction
- Posted speed limit: 65 mph
- Infraction speed \(\geq 76 \) mph
- Criminal speeding \(> 85 \) mph
Typical Equipment Set-up

Front Camera and Flash Unit

Rear Camera and Flash Unit
OBSERVATION PERIODS

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>START & END</th>
<th>LENGTH (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>2001 to 2005</td>
<td>5 years</td>
</tr>
<tr>
<td>Warning</td>
<td>1/22/2006 – 2/21/2006</td>
<td>31 days</td>
</tr>
<tr>
<td>Program</td>
<td>2/22/2006 – 10/23/2006</td>
<td>244 days</td>
</tr>
<tr>
<td>After</td>
<td>10/24/2006 – 12/31/2006</td>
<td>69 days</td>
</tr>
</tbody>
</table>
EVALUATION OF THE SEP PROGRAM

- Speeding
 - Detection frequencies
 - Average speeds

- Safety
 - Crash reduction
 - Socio-economic savings

- Travel Time
DAILY DETECTION FREQUENCY (per camera)

Weekend/Holiday Effects
DAILY DETECTION FREQUENCY (per camera)

<table>
<thead>
<tr>
<th>Day of Week</th>
<th>Period Pair</th>
<th>Difference in Daily Speeding Detection</th>
<th>95% C.I.s</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekdays</td>
<td>Warning–Program</td>
<td>27.33 (<0.001)</td>
<td></td>
<td>15.17</td>
<td>39.49</td>
</tr>
<tr>
<td></td>
<td>After– Program</td>
<td>1096.04 (<0.001)</td>
<td></td>
<td>998.01</td>
<td>1194.06</td>
</tr>
<tr>
<td></td>
<td>Reactivation– Program</td>
<td>5.81 (0.072)</td>
<td></td>
<td>-0.53</td>
<td>12.16</td>
</tr>
<tr>
<td>Weekends and Holidays</td>
<td>Warning–Program</td>
<td>50.98 (<0.001)</td>
<td></td>
<td>19.86</td>
<td>82.11</td>
</tr>
<tr>
<td></td>
<td>After– Program</td>
<td>1860.66 (<0.001)</td>
<td></td>
<td>1689.91</td>
<td>2031.42</td>
</tr>
<tr>
<td></td>
<td>Reactivation– Program</td>
<td>9.13 (0.241)</td>
<td></td>
<td>-6.14</td>
<td>24.41</td>
</tr>
</tbody>
</table>
Typical relationship b/w speed and traffic volume during non-congested periods

- Reduction in mean speeds: 73.1 mph to 64.4 mph
- Reduction in speed dispersion: 3.5 mph to 1.2 mph
EFFECT ON SPEED

Distribution of speed by period (Normal distribution fitting)

- Before period
- Program period

Mean speed (mph)
ESTIMATED IMPACTS ON MEAN SPEEDS

- Speed reduction increase as volume decrease
- The mean speed decreased by
 - 9.97 mph when traffic volume was 206 vplph
 - 9.04 mph when traffic volume was 800 vplph
 - 8.47 mph when traffic volume was 1,169 vplph
START: Defining Target Crashes

- Which crashes materially affected?
 - rear-end
 - side-swipe
 - single vehicle
 - other

Effect of time of day?

OFF-PEAK CRASHES
(time of day as surrogate)
&
WEEKEND, HOLIDAYS

18 hrs on weekdays
24 hrs on weekends & holidays

- rear-end
- side-swipe
- single vehicle
- other
EVALUATION METHODS

Before-and-after (BA) studies

1. BA study with traffic flow correction
 (assumes only change B to A is traffic flow)

2. BA study with comparison zone
 (assumes changes in safety reflected at comparison site)

3. Empirical Bayes BA study
 (corrects for possible regression-to-the-mean)
BA STUDY DESIGN

k_i: The observed target crash frequency during the before period

l_j: The observed target crash frequency during the project period

π_j: The expected number of target crash frequency during the project period if the treatment had not been installed
CHANGE IN EXPOSURE

- On average, 42% increase in AADT from 2001 to 2006
 - 66.2% increase from 2001 to 2006
 - 60.1% increase from 2003 to 2006
 - 16.7% increase from 2005 to 2006

Observed crashes (K) is not suitable for prediction
EMPIRICAL BAYES BA RESULTS

Similar results from other methods
ECONOMIC ANALYSIS

• Crash costs obtained from extensive national research (NHTSA, 2000; Economic Impact of Motor Vehicle Crashes)

• Reflect AZ-specific costs: hospital charges by injury severity category (from AZ high-speed freeways)

• Utilize inflation adjusted costs from
 – National Hospital Discharge Survey
 – National Health Interview Survey
 – AZ hospital cost/charge information
 – CHAMPUS data on physician costs
 – National Medical Expenditure Survey
 – National Council on Compensation Insurance
 – Crashworthiness Data System.
The AZ CODES Project

AZ-Specific Costs:
Urban Freeways (Phoenix Area)
AND
Crash Cost by Crash Type & Severity Level
The AZ CODES Project

- Crash cost estimations applied to linked and unlinked cases obtained from extensive national research (NHTSA ‘00; Economic Impact of Motor Vehicle Crashes)
- Utilize inflation adjusted costs from
 - National Hospital Discharge Survey
 - National Health Interview Survey
 - AZ hospital cost/charge information
 - CHAMPUS data on physician costs
 - National Medical Expenditure Survey
 - National Council on Compensation Insurance
 - Crashworthiness Data System
<table>
<thead>
<tr>
<th>Collision type</th>
<th>Crash severity</th>
<th>Final Medical Cost</th>
<th>Total Other Cost</th>
<th>Quality of Life Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-vehicle</td>
<td>K</td>
<td>$162,870</td>
<td>$1,340,063</td>
<td>$2,111,828</td>
<td>$3,614,761</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>$122,790</td>
<td>$200,291</td>
<td>$361,020</td>
<td>$684,101</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$24,104</td>
<td>$61,295</td>
<td>$88,104</td>
<td>$173,503</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>$13,545</td>
<td>$34,771</td>
<td>$45,343</td>
<td>$93,659</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>$15,527</td>
<td>$41,402</td>
<td>$50,277</td>
<td>$107,206</td>
</tr>
<tr>
<td>Side-swipe (same direction)</td>
<td>K</td>
<td>$119,065</td>
<td>$1,651,039</td>
<td>$2,496,842</td>
<td>$4,266,946</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>$133,636</td>
<td>$301,959</td>
<td>$442,205</td>
<td>$877,801</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$27,504</td>
<td>$80,482</td>
<td>$86,291</td>
<td>$194,277</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>$16,354</td>
<td>$65,398</td>
<td>$64,673</td>
<td>$146,425</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>$15,826</td>
<td>$62,247</td>
<td>$50,530</td>
<td>$128,604</td>
</tr>
<tr>
<td>Rear-end</td>
<td>K</td>
<td>$71,037</td>
<td>$1,608,206</td>
<td>$2,441,687</td>
<td>$4,120,929</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>$70,820</td>
<td>$162,469</td>
<td>$239,725</td>
<td>$473,013</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$39,899</td>
<td>$100,244</td>
<td>$152,827</td>
<td>$292,971</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>$28,785</td>
<td>$77,037</td>
<td>$113,695</td>
<td>$219,517</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>$30,643</td>
<td>$77,278</td>
<td>$117,022</td>
<td>$224,942</td>
</tr>
<tr>
<td>Other Crashes</td>
<td>K</td>
<td>$77,949</td>
<td>$1,200,900</td>
<td>$1,784,243</td>
<td>$3,063,092</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>$97,374</td>
<td>$236,524</td>
<td>$310,713</td>
<td>$644,611</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$15,431</td>
<td>$62,216</td>
<td>$60,957</td>
<td>$138,604</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>$8,557</td>
<td>$42,965</td>
<td>$43,917</td>
<td>$95,439</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>$3,421</td>
<td>$34,919</td>
<td>$11,019</td>
<td>$49,359</td>
</tr>
</tbody>
</table>

KABCO Scale
K = Killed
A = disabling injury
B = evident injury
C = possible injury
O = property damage only (no apparent injury)
Annualized Estimated Crash Benefits

<table>
<thead>
<tr>
<th>Analysis method</th>
<th>Collision type</th>
<th>Crash severity</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fatal Crashes (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA study with traffic flow correction</td>
<td>Single Vehicle</td>
<td>$1,503</td>
<td>$134</td>
<td>$1,370</td>
<td>-$184</td>
<td>$4,266</td>
<td>$7,088</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Side-swipe (same)</td>
<td>$1,651</td>
<td>$0</td>
<td>$476</td>
<td>$204</td>
<td>$1,312</td>
<td>$3,643</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rear-end</td>
<td>$0</td>
<td>-$859</td>
<td>$1,018</td>
<td>$63</td>
<td>$2,021</td>
<td>$2,243</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>$1,748</td>
<td>$368</td>
<td>$369</td>
<td>$438</td>
<td>$605</td>
<td>$3,529</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$4,902</td>
<td>-$358</td>
<td>$3,234</td>
<td>$521</td>
<td>$8,204</td>
<td>$16,503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB BA study with time-varying κ</td>
<td>Single Vehicle</td>
<td>$1,471</td>
<td>$87</td>
<td>$1,341</td>
<td>-$192</td>
<td>$4,273</td>
<td>$6,980</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Side-swipe (same)</td>
<td>$1,803</td>
<td>$0</td>
<td>$520</td>
<td>$263</td>
<td>$1,373</td>
<td>$3,960</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rear-end</td>
<td>$0</td>
<td>-$822</td>
<td>$1,145</td>
<td>$155</td>
<td>$2,064</td>
<td>$2,543</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>$1,762</td>
<td>$371</td>
<td>$372</td>
<td>$443</td>
<td>$618</td>
<td>$3,565</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$5,036</td>
<td>-$364</td>
<td>$3,379</td>
<td>$669</td>
<td>$8,328</td>
<td>$17,048</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KABCO Scale
- K = Killed
- A = disabling injury
- B = evident injury
- C = possible injury
- O = property damage only (no apparent injury)
CONCLUSIONS
• Speeding detection
 – Speeding detection frequency (speeds ≥ 76 mph) increased by a factor of 10.5 after temporarily termination of SEP
 • During termination the cameras were “bagged” and advertising and news media advertised the end of the program.
 – The Scottsdale 101 SEP appears to be effective deterrent to speeding in excess of 75 mph
• No evidence of “spillover effects”
• Drivers appear to respond to “certainty” of enforcement
• Average Speeds
 – Reduced the average speed at the enforcement camera sites by about 9 mph
 – Contributed to reducing the speed dispersion at the enforcement camera sites.
 – Both the prerequisites for crash reduction (safety improvement) are met with the SEP
 – Traffic flow affects reduction in the mean and variance of speed resulting from the SEP
• Changes in target crashes
 – Total frequency of target crashes reduced by about 54%
 – Total number of injury crashes by about 48%, and
 – Total number of PDO crashes decreased by about 56%.
 – All but rear-end crashes types appear to have been reduced.
• Although the changes in safety for rear-end crashes were inconsistent among evaluation methods
 – the increase in rear-end crashes (other BA methods) was not significant.
• Swapping of crash types & reduction in severity distribution
 – Common for safety countermeasures (e.g. left-turn channelization, red-light cameras, conversion of stop signs to signals, etc.).

• Total estimated SEP benefits range from an estimated $16.5 M to $17.1 M per year.

• The fixed photo speed enforcement camera is a promising countermeasure to reduce crashes in AZ (consistent with findings in other countries).
• No significant difference in total free-flow travel time with and without the SEP
 – Suggests drivers can travel in the enforcement zone in the same acceptable amount of travel time regardless of the existence of the SEP.

• The insignificant difference in total free-flow travel time with and without the SEP conditions
 – Total travel time savings from reduction in crash frequency.
 – Reduction >‘569 vehicle-hrs/yr’ when assuming the 1-lane block crash state
 – Reduction >‘37,981 vehicle-hrs/yr’ when assuming the 2-lane block crash state
• Raises serious doubts: validity of arguments against photo speed enforcement on the grounds of reduced mobility
 – Findings suggest photo speed enforcement not only improves safety but also improves mobility through
 • travel time savings,
 • improved travel time reliability, and
 • reduced travel time (consistent with findings in other countries).